Robust PCA by Controlling Sparsity in Model Residuals

نویسندگان

  • Gonzalo Mateos
  • Georgios B. Giannakis
چکیده

University of Minnesota, USA 1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The analysis of residuals variation and outliers to obtain robust response surface

In this paper, the main idea is to compute the robust regression model, derived by experimentation, in order to achieve a model with minimum effects of outliers and fixed variation among different experimental runs. Both outliers and nonequality of residual variation can affect the response surface parameter estimation. The common way to estimate the regression model coefficients is the ordinar...

متن کامل

An Alternative Robust Model for in situ Degradation Studies “Korkmaz-Uckardes”

The first purpose of this study is to present an alternative robust model in order to describe ruminal degradation kinetics of forages and to minimize the fitting problems. For this purpose, the Korkmaz-Uckardes (KU) model, which has a logarithmic structure, was developed. The second purpose of this study is to estimate, by using the Korkmaz-Uckardes (KU)model, the parameters tp (the time to pr...

متن کامل

Advances in network health monitoring ] Dynamic Network Cartography

Principal component analysis (PCA) is widely used for dimensionality reduction, with well-documented merits in various applications involving high-dimensional data, including computer vision, preference measurement, and bioinformatics. In this context, the fresh look advocated here permeates benefits from variable selection and compressive sampling, to robustify PCA against outliers. A least-tr...

متن کامل

Prediction of blood cancer using leukemia gene expression data and sparsity-based gene selection methods

Background: DNA microarray is a useful technology that simultaneously assesses the expression of thousands of genes. It can be utilized for the detection of cancer types and cancer biomarkers. This study aimed to predict blood cancer using leukemia gene expression data and a robust ℓ2,p-norm sparsity-based gene selection method. Materials and Methods: In this descriptive study, the microarray ...

متن کامل

Fuzzy Robust Regression Analysis with Fuzzy Response Variable and Fuzzy Parameters Based on the Ranking of Fuzzy Sets

‎Robust regression is an appropriate alternative for ordinal regression when outliers exist in a given data set‎. ‎If we have fuzzy observations‎, ‎using ordinal regression methods can't model them; In this case‎, ‎using fuzzy regression is a good method‎. ‎When observations are fuzzy and there are outliers in the data sets‎, ‎using robust fuzzy regression methods are appropriate alternatives‎....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015